
 Notes on algorithms : 1 Page 1 of 38

Version 4, 7 February 2021
© Copyright John G Harris, 2002 – 2021

You have permission to copy this document for teaching and learning
purposes.

0 Contents

0 Contents .. 1

1 Introduction ... 2

2 Quotient and remainder division ... 3
2.1 Principles .. 3
2.2 Operator /qr .. 4
2.3 Operator /cqr .. 5

2.3.1 Implementation of /cqr .. 5
2.4 Operators mod and % .. 7

2.4.1 Proof that intermediate values can be reduced modulo B 8
2.5 Proofs of some properties of the % operator .. 10

3 The Highest Common Factor (hcf) algorithm ... 15
3.1 The plan ... 15
3.2 The hcf algorithm and its pre- and post-conditions 15
3.3 Proof that the algorithm always terminates .. 16
3.4 Proof that the algorithm always produces a common factor 16
3.5 Proof that the algorithm always produces the highest common factor ... 17
3.6 Some observations .. 20

4 The inverse modulo (inv_mod) algorithm .. 21
4.1 The inv_mod algorithm : Outline and pre- and post-conditions 21
4.2 The inv_mod algorithm : Details ... 23
4.3 Proof that hcf(Num, Base) = 1 is a necessary requirement 25
4.4 Proof that the sequence always has an element m - 2 26
4.5 Proof that the result is always correct : for Integers 27
4.6 Proof that the result is always correct : for Natural Numbers 31
4.7 Proof that the result is unique ... 36
4.8 Some observations .. 37

 Notes on algorithms : 1 Page 2 of 38

1 Introduction

This note covers several topics relevant to modulo arithmetic :

 Division giving quotient and remainder

 Highest Common Factor, hcf, alias Greatest Common Divisor, gcd

 Modular multiplicative inverse (x-1 in modulo arithmetic)

Algorithms and proofs of their correctness are given for the latter two, both for
Integers and for Natural Numbers.

The note was originally written to support a special-purpose RPN calculator, hence
some unusual function names.

 Notes on algorithms : 1 Page 3 of 38

2 Quotient and remainder division

2.1 Principles

Suppose we have a division operator, call it divop, defined as follows :
Divide b by a giving quotient q and remainder r such that

b = q×a + r

Note :
Usually the numbers a, b, q, r are either

Natural Numbers, (0, 1, 2, …), or
Integers, (…, -2, -1, 0, 1, 2, …).

The definition is the same in both cases.

The definition can also be used for
Real Numbers, (-3.7, 0.0, 0.63, 1.0, 2.154, etc.).

To be useful, an additional constraint is then needed :
that q is an ‘integral’ value, (…, -2.0, -1.0, 0.0, 1.0, 2.0, …).

Provided a ≠ 0 there can be many solutions, for instance
q = 0, r = b

And
q = 1, r = b – a

Note : If a = 0 then the solution is r = b; q can be any number. Not useful.

If
b = q×a + r

is a solution then
b = q×a + r + a – a

so
b = (q + 1)×a + (r - a) When the subtraction is defined
b = (q - 1)×a + (r + a) When the subtraction is defined

are also solutions.

In general,
b = (q + m)×a + (r – m×a)
b = (q - n)×a + (r + n×a)

for any numbers m and n with some restrictions : if negative numbers are not
allowed then the values of m and n are restricted to ones where the subtractions
are defined (e.g 2-1, but not 1-2); if the numbers are Real Numbers then the values
of m and n are restricted to integral values.

 Notes on algorithms : 1 Page 4 of 38
These are all the solutions that meet the requirements when a ≠ 0. With so many
solutions our supposed operator divop is not yet fully specified.

Provided a ≠ 0 and negative numbers are allowed, we can require r to be in any
interval

c ≤ r < (c + |a|)

where c is any number and |a| is abs(a).

If there is a solution then there is only one solution.
When negative numbers are allowed and a ≠ 0 then there is always a solution.
When negative numbers are not allowed and a ≠ 0 then there is also always a
solution provided c ≤ b.

This existence and uniqueness property is well known for the case when c = 0; it is
proved in many textbooks. It can be shown for other values of c by displaying

 (b - c) = q×a + (r - c) with 0 ≤ (r - c) < |a|

which has a unique q and (r - c) so that c ≤ r < (c + |a|).

Once c is given, our supposed operator divop becomes fully specified.

If negative numbers are not allowed then the only definition that works
for all a, b, q, r ≥ 0 is

 a = 0 : operator undefined
a > 0 : b = q×a + r and 0 ≤ r < a

I.e The well-known rule where c = 0. Note that a = |a| in this case.

If numbers are allowed to be negative then c can be chosen to suit the application,
possibly with different values of c for different cases. The choice of value(s) can
provoke fierce arguments!

Practical example :
(11 o'clock + 2 hours) modulo 12 is 1 o'clock
(11 o'clock + 1 hour) modulo 12 is 12 o'clock : not 0 o'clock!

Here c = 1.

2.2 Operator /qr

The binary operator /qr divides b by a returning the quotient q and remainder r, as
follows:

 a = 0 : /qr(b, a) is undefined;
a ≠ 0 : /qr(b, a) = (q, r) where b = q×a + r and 0 ≤ r < |a|

 Notes on algorithms : 1 Page 5 of 38

I.e As in divop with c = 0.

2.3 Operator /cqr

The ternary operator /cqr divides b by a returning the quotient q and remainder r
offset by c, as follows:

 if a = 0
then /cqr(c, b, a) is undefined
else if negative numbers are not allowed and b < c
then /cqr(c, b, a) is undefined
else /cqr(c, b, a) = (q, r)
 where b = q×a + r and c ≤ r < (c + |a|)

I.e As in divop with c given.

The user can choose whichever value of c is appropriate in the context of the
application. E.g A value of 1 for 12 hour o’clock arithmetic. The user is
responsible for providing the right value of c in each case.

2.3.1 Implementation of /cqr

Assume we have a, b, c, q, r such that a ≠ 0 and
b = q×a + r

but where r is not necessarily in the required interval
c ≤ r < (c + |a|)

Note : One possibility is q = 0, r = b .

How to adjust q and r to meet the desired constraint on r ?

Use one of the two equations as necessary :
b = (q - 1)×a + (r + a)
b = (q + 1)×a + (r - a)

Apply this repeatedly to increase or decrease r as necessary until r is in the target
interval.

If numbers can't be negative then this must be done in a way that assures we never
try to go negative or use negative numbers.

 Notes on algorithms : 1 Page 6 of 38
Cases :

r < c and a > 0 : q - 1, r + a
r < c and a < 0 : q + 1, r – a, or equally r + |a|

r ≥ (c + |a|) and a > 0 : q + 1, r – a
r ≥ (c + |a|) and a < 0 : q - 1, r + a, or equally r - |a|

This could all be done in one while loop after setting suitable increments for q and
r, but to avoid negative numbers somewhat more disorderly code must be used.

while (r < c)
 {
 // Not possible if no negative numbers and c=0!
 if (a > 0)
 { q -= 1; r += a; } // or r += abs(a);
 else
 { q += 1; r += abs(a); }
 }

while (r >= (c + abs(a)))
 {
 if (a > 0)
 { q += 1; r -= a } // or r -= abs(a);
 else
 { q -= 1; r -= abs(a); }
 }

This can be tidied up a little :

while (r < c)
 {
 // Not possible if no negative numbers and c=0!
 r += abs(a);
 if (a > 0)
 q -= 1;
 else
 q += 1;
 }

while (r >= (c + abs(a)))
 {
 r -= abs(a);
 if (a > 0)
 q += 1;
 else
 q -= 1;
 }

If c < a or not much larger then only a few iterations of this step-by-one procedure
need to be done. If c is much larger then the time to do the steps could be

 Notes on algorithms : 1 Page 7 of 38
inconveniently high. To avoid this, the step-by-one procedure can be preceded by
a single large step, as follows.

First do
 /cqr(0, b, a) = (q, r) and
 /cqr(0, c, a) = (qc, rc) where
 b = q×a + r
 c = qc×a + rc
 and r and rc are close to zero

Notice that
 b = q×a – (qc×a) + (qc×a) + r
so
 b = (q–qc)×a + (qc×a) + r
but
 qc×a = c – rc
so
 b = (q–qc)×a + c – rc + r

r and rc are close to zero so the new remainder is close to c, as desired. The
starting point for the step-by-one procedure is now (q1, r1) where
 q1 = (q–qc)
 r1 = b – q1×a

2.4 Operators mod and %

mod is the modulo operator. Given (b, a), the operator mod divides b by a and
returns the remainder r as follows:

 a ≤ 0 : mod(b, a) is undefined;
a > 0: mod(b, a) = r where b = q×a + r and 0 ≤ r < a

I.e It returns the r value of /qr(b, a).

Note that a is not allowed to be zero or negative. b can be positive or zero; it can
also be negative if the number system in use has negative numbers. The result is
zero or positive even when b is negative.

The operator % is an infix alias for mod, defined by :

b % a = mod(b, a)

It can be used as an alternative notation when desired.

Warning : This is the definition of mod (and %) used in this document.
Programming languages typically define it to return the r value of /cqr with c

 Notes on algorithms : 1 Page 8 of 38
depending on the sign of b, the sign of a, whether a and b have the same sign, etc.
Different languages can have different rules.

mod returns r values with 0 ≤ r < a. What if a different range is needed ?
We could follow /cqr and use c as an index, writing modc , defined by :

 a ≤ 0 : modc (b, a) is undefined;
a > 0 : modc (b, a) = r where b = q×a + r and c ≤ r < (c + |a|)

Then h o’clock is written h mod1 12.

Using mod to mean mod0 is a small abuse of notation. It would be unlikely to
cause confusion.

2.4.1 Proof that intermediate values can be reduced modulo B

This is a result that is used later on in proofs. It can also be used in some of the
algorithms.

To prove :
Given numbers x, y, B with 0 < B, and an operator op that is + or ×,
then
(x op y) % B
= [(x % B) op y] % B
= [x op (y % B)] % B
= [(x % B) op (y % B)] % B

Remark :
If numbers can be negative then this result also applies when the operator op is -
(minus).

Proof :

 if B ≤ 0
then there is nothing to prove,
otherwise :

Define some quotients and remainders
x = qx×B + rx for some qx, rx with 0 ≤ rx < B
y = qy×B + ry for some qy, ry with 0 ≤ ry < B

and
(rx op ry) = q×B + r for some q, r with 0 ≤ r < B

 Notes on algorithms : 1 Page 9 of 38
Now substitute the expressions :

A :
(x op y) % B
= ((qx×B + rx) op (qy×B + ry)) % B
= (()×B + (rx op ry)) % B
= (()×B + (q×B + r)) % B By the definition of q, r
= ((+ q)×B + r) % B
= r By the definition of % in 2.4

B :
[(x % B) op y] % B
= [(qx×B + rx) % B op (qy×B + ry)] % B
= [rx op (qy×B + ry)] % B By the definition of % in 2.4
= (()×B + (rx op ry)) % B
= (()×B + (q×B + r)) % B By the definition of q, r
= ((+ q)×B + r) % B
= r By the definition of % in 2.4

C :
[x op (y % B)] % B
= [(qx×B + rx) op (qy×B + ry) % B] % B
= [(qx×B + rx) op ry] % B By the definition of % in 2.4
= (()×B + (rx op ry)) % B
= (()×B + (q×B + r)) % B By the definition of q, r
= ((+ q)×B + r) % B
= r By the definition of % in 2.4

D :
[(x % B) op (y % B)] % B
= [(qx×B + rx) % B op (qy×B + ry) % B] % B
= [rx op ry] % B By the definition of % in 2.4
= [q×B + r] % B By the definition of q, r
= r By the definition of % in 2.4

Therefore, by A, B, C, D :
r
= (x op y) % B
= [(x % B) op y] % B
= [x op (y % B)] % B
= [(x % B) op (y % B)] % B

 Notes on algorithms : 1 Page 10 of 38
QED

This theorem can be applied repeatedly to sub-expressions if desired, as well as to
whole expressions.

But note the warning at the end of section 4.5.

2.5 Proofs of some properties of the % operator

These are some results that are used later on in proofs.

Reminder : x % B is undefined if B ≤ 0, see section 2.4.

.1 To prove :
if 0 ≤ x < B then x % B = x

 if not (0 ≤ x < B)
then there is nothing to prove,
otherwise :

x = 0×B + x with 0 ≤ x < B, and B > 0
so

(x % B) = x Definition of % in 2.4

QED

Some consequences :
if B > 0 then 0 % B = 0
if B > 1 then 1 % B = 1

.2 To prove :
(x % B) % B = x % B

 if B ≤ 0
then both sides are undefined,
otherwise :

 x = q×B + r for some q, r, with 0 ≤ r < B,
so

x % B = r Definition of % in 2.4

 Notes on algorithms : 1 Page 11 of 38
and

(x % B) % B
= r % B
= r By .1
= x % B

QED

.3 To prove :
(c×B + x) % B = x % B for any integral c

 if B ≤ 0
then both sides are undefined,
otherwise :

 x = q×B + r for some q, r with 0 ≤ r < B
so
 (c×B + x) % B

= ((c + q)×B + r) % B
= r Definition of % in 2.4
= x % B Definition of % in 2.4

QED

.4 To prove :
 if B > 0
then [x + (B - x % B) % B] % B = 0

That is, (B - x % B) % B is the modular additive inverse of x with respect to B, if it
exists. In effect, it is ‘-x’.

Proof :

 if B ≤ 0
then there is nothing to prove,
otherwise :

 As 0 ≤ (x % B) < B the subtraction is always defined even if negative

numbers are not allowed. Definition of % in 2.4

 Notes on algorithms : 1 Page 12 of 38
 [x + (B - x % B) % B] % B

= [x + (B - x % B)] % B By 2.4.1
= [x % B + (B - x % B)] % B By 2.4.1
= [x % B + B - x % B] % B
= [1×B + 0] % B
= 0 Definition of % in 2.4

QED

.5 To prove :
if [B > 0 and C > 0]
then (x % (B×C)) % B = x % B

 if [B ≤ 0 or C ≤ 0]
then there is nothing to prove
otherwise :

 LHS :
x = q1×(B×C) + r1 for some q1, r1 with 0 ≤ r1 < B×C
= q1×(B×C) + q2×B + r2 for some q2, r2 with 0 ≤ r2 < B
= (q1×C + q2)×B + r2

 RHS :

x = q0×B + r0 for some q0, r0 with 0 ≤ r0 < B

But q, r values are unique,
so

r2 = r0

and
(x % B×C) % B = r1 % B = r2 = r0

= x % B Definition of % in 2.4

QED

.6 To prove :
if [x > 1 and y > 1 and hcf(x, y) = 1]
then x % y ≠ 0

 where hcf(x, y) is the Highest Common Factor of x and y

 Notes on algorithms : 1 Page 13 of 38
 if [x ≤ 1 or y ≤ 1 or hcf(x, y) ≠ 1]

then there is nothing to prove
otherwise :

Case 1 : x < y

1 < x < y,
so

x % y = x By .1
but

x ≠ 0 As x > 1
so

x % y ≠ 0 in Case 1

Case 2 : x ≥ y
x = q×y + r for some q, r with 0 ≤ r < y Definition of % in 2.4
q > 0 Because x > 0 and y > 0 and x ≥ y

 assume x % y = 0
then

x = q×y Definition of % in 2.4
hcf(x, y) = y Definition of Highest Common Factor

but
y > 1 Premise

so
hcf(x, y) ≠ 1

and
hcf(x, y) = 1 Premise
contradiction!

Therefore

x % y ≠ 0 in Case 2 Reductio ad absurdam

 By Case 1 and Case 2

x % y ≠ 0

QED

.7 To prove :
if B > 0 and x % B = y % B
then (x×a) % B = (y×a) % B

 Notes on algorithms : 1 Page 14 of 38
 if B ≤ 0 or x % B ≠ y % B

then there is nothing to prove
otherwise :

Define some quotients and remainders
x = qx×B + rx for some qx, ry with 0 ≤ rx < B
y = qy×B + ry for some qy, ry with 0 ≤ ry < B

Now

x % B = rx and y % B = ry Definition of % in 2.4
so

rx = ry Premise
= r, say

therefore
(x×a) % B
= ((x % B)×a) % B By 2.4.1
= (r×a) % B

and
(y×a) % B
= ((y % B)×a) % B By 2.4.1
= (r×a) % B

so
(x×a) % B = (r×a) % B = (y×a) % B

QED

 Notes on algorithms : 1 Page 15 of 38

3 The Highest Common Factor (hcf) algorithm

3.1 The plan

.1 State the hcf algorithm and its pre- and post-conditions.

.2 Prove that it always terminates.

.3 Prove that it always produces a common factor.

.4 Prove that it always produces the highest common factor.

3.2 The hcf algorithm and its pre- and post-conditions

The problem

 Given numbers a and b, find their highest common factor h. That is, find a
number, h = hcf(b, a), that divides both a and b exactly (a common factor),
and is the highest such number.

 Here, “numbers” are either all Natural Numbers, or all Integers.

Pre-conditions

 Both a and b are positive : 0 < a and 0 < b

Post-conditions

 h = hcf(b, a) is a common factor of a and b (h divides both a and b exactly)
and
h is the highest such common factor.

The algorithm :

 Calculate a succession of couples starting with (a0, b0) = (a, b), and ending
with the couple (am, 0).

 For 0 ≤ n < m the successor of the couple (an, bn) is (an+1, bn+1) where

an+1 = bn

bn+1 = an % bn

 The last couple in the sequence is (am, 0) = (h, 0).

h is the answer : hcf(b, a) = h.

 Notes on algorithms : 1 Page 16 of 38
3.3 Proof that the algorithm always terminates

The definition of r = x % y is that x = q×y + r for some quotient q with
0 ≤ r < y.

There is always a solution, and only one, provided y > 0.
Hence, in going from (an, bn)
to
(an+1, bn+1) = (bn, an % bn)
we must have 0 ≤ bn+1 < bn .

 The sequence starts at (~ , b) , proceeds through a succession of couples
with a strictly decreasing right-hand part that is never less than 0, and ends
at (~′ , 0) , so there can at most be b + 1 elements in the sequence, usually
fewer.

 Therefore the sequence of couples is always finite; the algorithm always

terminates.

QED

3.4 Proof that the algorithm always produces a common factor

 Consider the final couple in the sequence. It is (am, 0) = (h, 0)
for some m > 0 .

 Note : b > 0 by a pre-condition so the last element is not the first element.

.1 To prove :

for all 0 ≤ n < m
if h is a common factor of an+1 and bn+1

then h is a common factor of an and bn, .

 By the definition of the sequence,

an+1 = bn

bn+1 = an % bn

A :

bn = an+1

so immediately :
if h is a factor of an+1

then h is a factor of bn.

B :
an % bn = bn+1

 Notes on algorithms : 1 Page 17 of 38
By the definition of %,

an = q×bn + (an % bn) for some q

That is,

an = q×an+1 + bn+1 for some q .
if h is a factor of an+1 and bn+1

then an = q×a'×h + b'×h for some a' and b'

an = (q×a' + b')×h for some a' and b' , so h is a factor of an.

By A and B,

if h is a common factor of an+1 and bn+1

then h is a common factor of an and bn.

QED

.2 To prove :
h is a common factor of a and b.

 h is a common factor of am = h and of bm = 0 (vacuously).

 Therefore, by .1 and induction, h is a common factor of an and bn for

all 0 ≤ n ≤ m, and hence of a0 = a and b0 = b.

QED

3.5 Proof that the algorithm always produces the highest
common factor

.1 To prove :
for all 0 ≤ n < m
if c is any common factor of an and bn

then c is a common factor of an+1 and bn+1.

 Reminder :

Any c ≠ 0 is a factor of 0, vacuously, and bm = 0, so therefore c is a factor of
bm.

 By the definition of the sequence,

an+1 = bn

bn+1 = an % bn and
bn > 0

 Notes on algorithms : 1 Page 18 of 38
A :

an+1 = bn

so immediately
if c is a factor of bn

then c is a factor of an+1.

B :

bn+1 = an % bn

 By the definition of %

an = q×bn + (an % bn) for some q with 0 ≤ (an % bn) < bn

so
an ≥ q×bn

and the subtraction
an - q×bn

is defined even if negative numbers are not allowed.

Therefore

(an % bn) = an - q×bn

and it is always defined
so

bn+1 = an - q×bn

 if c is a factor of both an and bn

then an = a'×c for some a' and
 bn = b'×c, for some b'

so
bn+1 = a'×c - q×b'×c = (a' - q×b')×c

therefore
if c is a factor of both an and bn

then c is a factor of bn+1

By A and B,

if c is a common factor of an and bn
then c is a common factor of an+1 and bn+1

QED

.2 To prove :
if c is any common factor of a = a0 and of b = b0

then for all 0 ≤ n ≤ m
 c is a common factor of an and bn

 Notes on algorithms : 1 Page 19 of 38
By .1 and induction

if c is a common factor of a0 and b0

then for all 0 ≤ n ≤ m
 c is a common factor of an and bn

QED

.3 To prove :
h is the highest common factor of a and b.

 For any common factor, c, of a and b we have that

c ≤ a and c ≤ b
As

there exists a common factor of a and b, namely 1, and c cannot be
arbitrarily large

Then
there is a highest common factor, cmax, of a and b

By .2

cmax is a factor of am
am = h

so cmax ≤ h

By 3.4, item .2

h is a common factor of a and b
so h ≤ cmax

Therefore

cmax ≤ h ≤ cmax
so h = cmax

I.e h is the highest common factor of a and b

QED

 Notes on algorithms : 1 Page 20 of 38
3.6 Some observations

.1 Negative numbers

Suppose negative numbers are allowed. If c is a common factor of a and b
then -c is also a common factor.

Also 'highest' can be regarded as the most positive rather than the one with
the greatest magnitude.

Thus the definition of the hcf function can be extended to a function hcf* on
all non-zero integers by defining :

 hcf*(b, a) = hcf(abs(b), abs(a)), where a ≠ 0 and b ≠ 0

 This definition can also be used when negative numbers are not allowed.

.2 Zero numbers

 The algorithm defined in 3.2 never produces a zero result; it is always 1 or

more. The case of attempting to apply hcf* with a or b zero can be reported
unambiguously by returning a zero result.

 Thus the hcf* function can be extended to the function hcf** on all

numbers by defining :

 if (a ≠ 0 and b ≠ 0)

then hcf**(b, a) = hcf(abs(b), abs(a))
otherwise hcf**(b, a) = 0

.3 ‘The’ hcf function

 At this point the hcf** function can be renamed as hcf, so extending the

function defined in section 3.2 to all Natural Numbers and all Integers.

 Notes on algorithms : 1 Page 21 of 38

4 The inverse modulo (inv_mod) algorithm

4.1 The inv_mod algorithm : Outline and pre- and post-
conditions

The problem

Given numbers Num and Base, find the modular multiplicative inverse, Inv,
of Num with respect to Base, if it exists. That is, find a number

 Inv = inv_mod(Num, Base)
such that
 mod(Num×Inv, Base) = 1

In other words, Inv is Num-1 in modulo Base arithmetic.

 Here, “numbers” are either all Natural Numbers, or all Integers.

Symbol definitions

Some symbols used in the description of the algorithm and in the proofs need to be
defined more explicitly than usual.

.1 The × and ꞏ operators

Given any two numbers x and y, then x×y is defined here to be x multiplied
by y using the rules of multiplication for Natural Numbers when x and y are
Natural Numbers and the rules for Integers when x and y are Integers.

xꞏy is defined here to mean the same as x×y. (Dot can be easier to read in a
long expression). And xꞏy % B is defined to mean (xꞏy) % B and x % BꞏC
to mean x % (BꞏC).

.2 The (-x) symbol

Given any two numbers x and B with 0 < B, then there are two cases
relevant here :

if the number system in use allows negative numbers
then (-x) means –x
else (-x) means [B - (x % B)] % B

The value of B is assumed from the context. When “numbers” are Natural
Numbers B will always be Base in what follows.

 Notes on algorithms : 1 Page 22 of 38

Pre-conditions

.1 Base > 1

Otherwise either Base = 1 and Num % Base = 0, which has no inverse,
or
Base ≤ 0 so Num % Base is not defined, see 2.4

.2 Num % Base ≠ 0

0 has no inverse, as usual.

.3 hcf(Num, Base) = 1

Otherwise an inverse does not exist, see 4.3.

Post-conditions

.1 The result, Inv = inv_mod(Num, Base),
is the desired inverse, obeying
mod(Num × Inv, Base) = 1

.2 0 ≤ Inv < Base

The result is always tidied up.

The algorithm : Outline

Note : There are other algorithms, see Wikipedia (search term Modular
Multiplicative Inverse).

Perform the hcf algorithm, but recording information in a sequence along the way.
At each stage of the calculation record six values :

.1 The reducing pair of numbers of the hcf algorithm;

.2 The quotient and remainder of the division performed at that stage of
calculating the hcf;

.3 A pair of numbers, to be calculated later.

Now run backwards along the sequence, putting values into the third pair of
numbers. An initial value is put into an element near the end. A calculated value is

 Notes on algorithms : 1 Page 23 of 38
put into the preceding elements in turn until reaching the beginning of the
sequence.

Finally, derive the required inverse from the values now in the first element of the
sequence.

4.2 The inv_mod algorithm : Details

Form a sequence of records, each holding six values :
a : as in the hcf algorithm
b : as in the hcf algorithm
q : quotient where a = qꞏb + r with 0 ≤ r < b
r : remainder where a = qꞏb + r with 0 ≤ r < b
c : value that is propagated backwards; resembles a
d : value that is propagated backwards; resembles b

.1 Forward calculation

Construct the first element of the sequence :
a0 = Num
b0 = Base

Add successor elements :
an+1 = bn

bn+1 = an % bn

until the last element has been reached, the element where to continue
would mean dividing by zero.

At the last element :

am = h for some h
bm = 0 for some m (specifically, the least m such that bm = 0)

Ensure that at each element the values qn, rn obey :

for 0 ≤ n < m
an = qnꞏbn + rn with 0 ≤ rn < bn

(i.e the quotient q and remainder r on dividing an by bn)
and

for n = m
qm = "don't care"
rm = "don't care"

 Notes on algorithms : 1 Page 24 of 38
There can be a check on the three pre-conditions during this process :

At the beginning check that

Base > 1, i.e that b0 > 1
and that

Num % Base ≠ 0, i.e that r0 ≠ 0.

At the end check that

hcf(Num, Base) = 1, i.e that am = h = 1.

.2 Backward calculation

Ensure that at each element, c and d obey :

at the last two elements :

cm-1 = cm = "don't care"
dm-1 = dm = "don't care"

at the last but two element :

cm-2 = qm-2

dm-2 = (-1)

and for all other elements :
 for 0 ≤ n < m-2

cn = qnꞏ(-cn+1) + dn+1

dn = cn+1

Note : Remember the definition of (-x) in 4.1, Symbols .2.

.3 The result is :

 Inv_mod(Num, Base)
= Inv
= (Base - (d0 % Base)) % Base

I.e The result is (-d0) which is then adjusted if necessary so 0 ≤ Inv < Base.
(However, Inv won’t be 0 as this is precluded by the pre-conditions).

Remark 1 : Inconvenient sub-expressions

To avoid negative numbers or too-large numbers it is valid to replace any sub-
expression, exp, in the calculation with exp % Base , see 2.4.1.

 Notes on algorithms : 1 Page 25 of 38
Remark 2 : Compare a, b with c, d

Consider the elements of the sequence :

 an = qnꞏbn + (an % bn) from the definition of qn

so
(an % bn) = an - qnꞏbn This subtraction is always defined,
 see 3.5 item .1 B

Now

an+1 = bn hcf algorithm
bn+1 = an % bn hcf algorithm
= an - qnꞏbn

= an - qnꞏan+1

so
an = qnꞏan+1 + bn+1

bn = an+1

Notice the similarity of c, d to a, b.

4.3 Proof that hcf(Num, Base) = 1 is a necessary requirement

Consider two numbers, a and B, both positive, with the common factor c. 1 is a
factor of both a and B so c does exist.

Suppose that there is a number, i, that is the multiplicative inverse of a with
respect to B, namely

 mod(aꞏi, B) = 1

That is

for some q
aꞏi = qꞏB + 1 Definition of mod

so
aꞏi - qꞏB = 1

This subtraction is defined even if negative numbers are not allowed.

Both a and B have the common factor c, so

for some a', b'
a = a'ꞏc
B = b'ꞏc

Thus
a'ꞏcꞏi - qꞏb'ꞏc = 1

 Notes on algorithms : 1 Page 26 of 38
so

cꞏ(a'ꞏi - qꞏb') = 1

The numbers have integral values of one kind or another, so there cannot be a
solution for i unless the left hand side of the equation evaluates to

 1 × 1

That is, for any a and B,

c = 1
is a necessary requirement if a is to have an inverse with respect to B.

c is a factor of both a and B, c = 1, and cannot be greater than 1, so 1 is the highest
common factor. That is
 hcf(a, B) = 1.

QED

The correctness of the algorithm will then prove that the pre-conditions are
sufficient requirements.

4.4 Proof that the sequence always has an element m - 2

Consider two numbers, Num and Base, that obey the pre-conditions given in
section 4.1. The algorithm constructs a sequence of records starting at element 0
and finishing at element m.

Element 0 contains the value
(a0, b0) = (Num, Base) By construction, see 4.2 item .1

Element m contains the values

(am, bm) = (h, 0) where h = hcf(Num, Base)
 By construction, see 4.2 item .1

Thus

b0 = Base
bm = 0

but by a pre-condition on Base
Base > 0 By 4.1 Precondition .1

so
b0 ≠ bm

and
m ≠ 0

 Notes on algorithms : 1 Page 27 of 38

Therefore m > 0 so element m-1 exists and contains the values

(am-1, bm-1) = (qm-1ꞏh, h) By 4.2 Remark 2
but

h = 1 By 4.1 Precondition .3
so

(am-1, bm-1) = (qm-1, 1)

Thus

b0 = Base
bm-1 = 1

but by a pre-condition on Base
Base > 1 By 4.1 Precondition .1

so
b0 ≠ bm-1

and
m ≠ 1

Therefore m > 1 so element m-2 exists.

QED

4.5 Proof that the result is always correct : for Integers

The desired inverse is (-d0) % Base. Some details of the proof of correctness
depend on the precise definition of “(-d0)”. It is convenient to give separate proofs
for Integers and Natural Numbers.

This section contains the proof for the case when negative numbers are allowed –
the Integers.

Reminder : When negative numbers are allowed the (-x) symbol is defined in
section 4.1 Symbol Definitions .2 to mean -x.

Remember that
Base > 1 By 4.1 Precondition .1

so 1 % Base = 1 throughout these proofs

Start by proving a general intermediate result.

.1 To prove :
for all n such that 0 ≤ n ≤ m-2
anꞏ(-dn) + bnꞏ(-cn) = 1 when negative numbers are allowed

 Notes on algorithms : 1 Page 28 of 38
.1.1 To prove :

am-2ꞏ(-d m-2) + b m-2ꞏ(-c m-2) = 1

 am

= h By construction, see 4.2 item .1
= 1 By 4.1 Precondition .3

bm

= 0 By construction, see 4.2 item .1

am-1

= qm-1ꞏam + bm From 4.2 item .3 Remark 2
= qm-1

 bm-1

= am From 4.2 item .3 Remark 2
= 1

 am-2

= qm-2ꞏam-1 + bm-1 From 4.2 item .3 Remark 2
= qm-2ꞏqm-1 + 1

 bm-2

= am-1 From 4.2 item .3 Remark 2
= qm-1

 cm-2

= qm-2 By construction, see 4.2 item .2

 dm-2

= (-1) By construction, see 4.2 item .2

Therefore

am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2)
= (qm-2ꞏqm-1 + 1)ꞏ(-(-1)) + qm-1ꞏ(-qm-2)
= qm-2ꞏqm-1 + 1 - qm-1ꞏqm-2

= 1

QED

.1.2 To prove :
for all n such that 0 ≤ n < m-2
anꞏ(-dn) + bnꞏ(-cn) = an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)

 Notes on algorithms : 1 Page 29 of 38
Expand

anꞏ(-dn) + bnꞏ(-cn)
= (qnꞏan+1 + bn+1)ꞏ(-dn) + an+1ꞏ(-cn) By 4.2 Remark 2
= (qnꞏan+1 + bn+1)ꞏ(-cn+1) + an+1ꞏ(-(qnꞏ(-cn+1) + dn+1))
 By construction see 4.2 item .2
= an+1ꞏqnꞏ(-cn+1) + bn+1ꞏ(-cn+1)
- an+1ꞏqnꞏ(-cn+1) + an+1ꞏ(- dn+1)
= an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)

QED

.1.3 Therefore by .1.1, .1.2 and induction
for all n such that 0 ≤ n ≤ m-2
anꞏ(-dn) + bnꞏ(-cn) = 1

QED

Now prove correctness.

.2 To prove :
(-d0) % Base is the (tidied up) multiplicative inverse of Num w.r.t. Base

That is, that
mod(Num×(-d0), Base) = 1

or, equally, that
Numꞏ(-d0) % Base = 1

Proof :

 a0ꞏ(-d0) + b0ꞏ(-c0) = 1 By .1 when n = 0
so

[a0ꞏ(-d0) + b0ꞏ(-c0)] % Base
= 1 % Base
= 1 By 2.5 item .1
 as Base > 1 by 4.1 Pre-condition .1

But

a0 = Num By construction, see 4.2 item .1
b0 = Base By construction, see 4.2 item.1

So
[Numꞏ(-d0) + Baseꞏ(-c0)] % Base = 1

hence
Numꞏ(-d0) % Base = 1 By 2.5 item .3

 Notes on algorithms : 1 Page 30 of 38
Conclusion :

The (tidied up) multiplicative inverse of Num with respect to Base
= (-d0) % Base
= (Base - (d0 % Base)) % Base By definition of (-x), 4.1 Symbols .2

QED

Note : By 2.4.1 this result still holds if some or all of the intermediate results when
calculating cn and dn are reduced modulo Base.

.3 Incidental proof
if Num > 1
then (-c0) is the multiplicative inverse of Base w.r.t. Num

Remark 1 :
Num ≠ 0 by 4.1 Pre-condition .2;

if Num < 0 then Base % Num is not defined;

if Num = 1 then Base % Num = 0 so Base has no inverse.

Remark 2 : To confirm :

Num > 1 here;
hcf(Base, Num) = hcf(Num, Base) = 1;
Base % Num ≠ 0 By 2.5 item .6 (remembering Base > 1)

The inv_mod pre-conditions are met

so
inv_mod(Base, Num) is defined

Reminder :

“Numbers” here are Integers so (-c0) means -c0 and (-d0) means -d0

Proof

 if Num ≤ 1
then there is nothing to prove
otherwise :

 a0ꞏ(-d0) + b0ꞏ(-c0) = 1 By .1

 Notes on algorithms : 1 Page 31 of 38
so, as in the proof of .2 but with % Num instead of % Base,

[Numꞏ(-d0) + Baseꞏ(-c0)] % Num = 1
[Numꞏ(-d0) % Num + Baseꞏ(-c0)] % Num = 1
[0 + Baseꞏ(-c0)] % Num = 1

hence
Baseꞏ(-c0) % Num = 1

Conclusion :

Provided Num > 1,
the (tidied up) multiplicative inverse of Base with respect to Num
= (-c0) % Num
= (Num - (c0 % Num)) % Num

QED

Warning : Unlike .2, this result .3 does not hold if intermediate results are
reduced modulo Base.

On the other hand, provided Num > 1, then both .2 and .3 do still hold if
intermediate results are reduced modulo NumꞏBase (by 2.5 item .5).

4.6 Proof that the result is always correct : for Natural Numbers

The inverse is (-d0) % Base. Some details of the proof of correctness depend on the
precise definition of “(-d0)”. It is convenient to give separate proofs for Integers
and for Natural Numbers.

This section contains the proof for the case when negative numbers are not
allowed – the Natural Numbers.

Reminder : When negative numbers are not allowed the (-x) symbol is defined in
4.1 Symbol .2 to mean [B - (x % B)] % B, with B = Base in this context.

By the definition of % in 2.4 we have 0 ≤ (x % B) < B so the subtraction is always
defined.

Note : Care must be taken that no step in the proofs appears to subtract a larger
number from a smaller one.

Remember that
Base > 1 By 4.1 Precondition .1

so 1 % Base = 1 throughout these proofs

 Notes on algorithms : 1 Page 32 of 38
Start by proving some general results concerning (-x).

.1 To prove :
(-x) % Base = (-x)

 (-x) = [Base - (x % Base)] % Base Definition of (-x) in 4.1 Symbols .2
so

(-x) % Base
= [Base - (x % Base)] % Base % Base
= [Base - (x % Base)] % Base By 2.5 item .2
= (-x) Definition of (-x) in 4.1 Symbols .2

QED

.2 To prove :
(x + (-x)) % Base = 0

 (x + (-x)) % Base

= [x + (Base - x % Base) % Base] % Base
 Definition of (-x) in 4.1 Symbols .2
= 0 By 2.5 item .4

QED

.3 To prove :
(-(-x)) = x % Base

Case 1 : x % Base = 0

(-(-x))
= [Base - (-x) % Base] % Base Definition of (-x) in 4.1 Symbols .2
= [Base - (Base - x % Base) % Base % Base] % Base
 Definition of (-x) in 4.1 Symbols .2
= [Base - (Base - 0) % Base] % Base
 By this case and 2.5 item .2
= [Base - 0] % Base Definition of % in 2.4
= 0 Definition of % in 2.4
= x % Base This case

 Notes on algorithms : 1 Page 33 of 38
Case 2 : 0 < x % Base < Base

(-(-x))
= [Base - (-x) % Base] % Base Definition of (-x) in 4.1 Symbols .2
= [Base - (Base - x % Base) % Base % Base] % Base
 Definition of (-x) in 4.1 Symbols .2

 = [Base - (Base - x % Base)] % Base By 2.5 item .2, twice
 = [Base + (x % Base - x % Base) - (Base - x % Base)] % Base

= [x % Base + (Base - x % Base) - (Base - x % Base)] % Base
= [x % Base] % Base
= x % Base By 2.5 item .2

Therefore, by Case 1 and Case 2

(-(-x)) = x % Base

QED

.4 To prove :
(-(x + y)) = [(-x) + (-y)] % Base

Let

x = qxꞏBase + rx for some qx, rx with 0 ≤ rx < Base
y = qyꞏBase + ry for some qy, ry with 0 ≤ ry < Base
and
(rx + ry) = qꞏBase + r for some q, r with 0 ≤ r < Base

We have
qꞏBase ≤ (rx + ry) < (Base + Base)

so
q < (1 + 1)
q ≤ 1

LHS

(-(x + y))
= [Base - (x + y) % Base] % Base Definition of (-x) in 4.1 Symbols .2
= [Base - (qxꞏBase + rx + qyꞏBase + ry) % Base] % Base
= [Base - (rx + ry) % Base] % Base By 2.5 item .3
= [Base - r] % Base Definition of r above and of % in 2.4

RHS

[(-x) + (-y)] % Base
 = [(Base - x % Base) % Base + (Base - y % Base) % Base] % Base

 Definition of (-x) in 4.1 Symbols .2
 = [(Base - x % Base) + (Base - y % Base)] % Base By 2.4.1

 Notes on algorithms : 1 Page 34 of 38
 = [(Base - (qxꞏBase + rx) % Base) +

 (Base - (qyꞏBase + ry) % Base)] % Base As above
 = [(Base - rx) + (Base - ry)] % Base Definition of % in 2.4

= [(Base + Base) - (rx + ry)] % Base
= [(Base + Base) - (qꞏBase + r)] % Base Definition of q, r
= [(1 - q)ꞏBase + (Base - r)] % Base q ≤ 1, r < Base
= [Base - r] % Base By 2.5 item .3

so LHS = RHS

QED

Now prove that the result of the algorithm is always correct.
Start by proving a general intermediate result.

.5 To prove :
for all n such that 0 ≤ n ≤ m-2
[anꞏ(-dn) + bnꞏ(-cn)] % Base = 1 when negative numbers are not allowed

.5.1 To prove :

[am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2)] % Base = 1

Remember that 1 < Base by 4.1 Precondition .1.

 am
= h By construction, see 4.2 item .1
= 1 By 4.1 Precondition .3

bm
= 0 By construction, see 4.2 item .1

 am-1

= qm-1ꞏam + bm From 4.2 item .3 Remark 2
= qm-1

 bm-1

= am From 4.2 item .3 Remark 2
= 1

 am-2

= qm-2ꞏam-1 + bm-1 From 4.2 item .3 Remark 2
= qm-2ꞏqm-1 + 1

 Notes on algorithms : 1 Page 35 of 38
 bm-2

= am-1 From 4.2 item .3 Remark 2
= qm-1

 cm-2

= qm-2 By construction, see 4.2 item .2

 dm-2

= (-1) By construction, see 4.2 item .2

Therefore

[am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2)] % Base
= [(qm-2ꞏqm-1 + 1)ꞏ(-(-1)) + qm-1ꞏ(-qm-2)] % Base
= [(qm-2ꞏqm-1 + 1)ꞏ(1 % Base) + qm-1ꞏ(-qm-2)] % Base By .3
= [(qm-2ꞏqm-1 + 1)ꞏ1 + qm-1ꞏ(-qm-2)] % Base By 2.5 item .1
= [1 + qm-1ꞏ(qm-2 + (-qm-2))] % Base
= [1 + qm-1ꞏ[(qm-2 + (-qm-2)) % Base]] % Base By 2.4.1, thrice
= [1 + 0] % Base By .2
= 1 By 2.5 item .1

QED

.5.2 To prove :
for all n such that 0 ≤ n < m-2
[anꞏ(-dn) + bnꞏ(-cn)] % Base = [an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)] % Base

Expand

[anꞏ(-dn) + bnꞏ(-cn)] % Base
= [(qnꞏan+1 + bn+1)ꞏ(-dn) + an+1ꞏ(-cn)] % Base By 4.2 item .3 Remark 2

 = [an+1ꞏ[qnꞏ(-dn) + (-cn)] + bn+1ꞏ(-dn)] % Base
= [an+1ꞏ[qnꞏ(- cn+1) + [(-(qnꞏ(-cn+1) + dn+1))]] + bn+1ꞏ(-cn+1)] % Base
 By 4.2 item .2

 = [an+1ꞏ[qnꞏ(- cn+1) + [(-(qnꞏ(-cn+1))) + (-dn+1)] % Base]
 + bn+1ꞏ(-cn+1)] % Base By .4

 = [an+1ꞏ[[qnꞏ(- cn+1) + (-(qnꞏ(-cn+1)))] % Base + (-dn+1)]
 + bn+1ꞏ(-cn+1)] % Base By 2.4.1, twice

 = [an+1ꞏ[0 + (-dn+1)] + bn+1ꞏ(-cn+1)] % Base By .2
= [an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)] % Base

QED

 Notes on algorithms : 1 Page 36 of 38
.5.3 Therefore by .5.1, .5.2, and induction,

for all n such that 0 ≤ n ≤ m-2
[anꞏ(-dn) + bnꞏ(-cn)] % Base = 1

QED

Finally prove correctness.

.6 To prove : (-d0) is the multiplicative inverse of Num w.r.t. Base

That is, that
mod(Num×(-d0), Base) = 1 or, equally, that
Numꞏ(-d0) % Base = 1

 [a0ꞏ(-d0) + b0ꞏ(-c0)] % Base = 1 By .5 when n = 0
but

a0 = Num and
b0 = Base

so
[Numꞏ(-d0) + Baseꞏ(-c0)] % Base = 1

hence
Numꞏ(-d0) % Base = 1 By 2.5 item .3

Conclusion :

The (tidied up) multiplicative inverse of Num with respect to Base
= (-d0) % Base
= (Base - (d0 % Base)) % Base

QED

Note : By 2.4.1 this result still holds if some or all of the intermediate results when
calculating cn and dn are reduced modulo Base.

4.7 Proof that the result is unique

Remember that
Base > 1 By 4.1 Precondition .1

so 1 % Base = 1 throughout this proof

Assume that t and u are both inverses, so that

Numꞏt % Base = 1 with 0 < t < Base
Numꞏu % Base = 1 and 0 < u < Base

 Notes on algorithms : 1 Page 37 of 38

 Numꞏt % Base = 1 = Numꞏu % Base

Numꞏt % Base = Numꞏu % Base
so

Numꞏtꞏt % Base = Numꞏtꞏu % Base By 2.5 item .7
(Numꞏt % Base)ꞏt % Base = (Numꞏt % Base)ꞏu % Base By 2.4.1

 1ꞏt % Base = 1ꞏu % Base Definition of t
t = u By 2.5 item .1 and definitions of t, u

 The (tidied up) multiplicative inverse is unique (and it exists when the pre-

conditions are true).

QED

4.8 Some observations

.1 Base = 1

Base = 1 is a peculiar case but it is well defined and so need not be rejected.
When Base = 1, n % Base = 0 so n has no inverse for any n.

.2 Num = 1

One case can be implemented immediately without executing the
algorithm :

if Base > 1 and Num = 1 then the inverse is 1.

.3 Minimum sequence size

The minimum length of the element sequence is 3.
E.g when Num = 1 and Base = 2 the sequence goes
(1, 2) (2, 1) (1, 0).

.4 Division in modular arithmetic

If Base is known and fixed in a particular context then the inverse of Num
can be written as 1/Num or Num-1. In general, the division a/b can then be
defined to be a×(1/b) or a×b-1 (not defined when b = 0).

 Notes on algorithms : 1 Page 38 of 38
.5 All Num and Base values

As the inverse can never be zero then, as in the hcf function, zero can be
used to indicate that Num or Base does not meet the pre-conditions. With
this rule the inv_mod function can be extended to all numbers.

 The End 

