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1 Introduction 

This note covers several topics relevant to modulo arithmetic : 

 Division giving quotient and remainder 

 Highest Common Factor, hcf, alias Greatest Common Divisor, gcd 

 Modular multiplicative inverse (x-1 in modulo arithmetic) 

Algorithms and proofs of their correctness are given for the latter two, both for 
Integers and for Natural Numbers. 

The note was originally written to support a special-purpose RPN calculator, hence 
some unusual function names. 
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2 Quotient and remainder division 

2.1 Principles 

Suppose we have a division operator, call it divop, defined as follows : 
Divide b by a giving quotient q and remainder r such that  

b = q×a + r  
 
Note : 
Usually the numbers a, b, q, r are either  

Natural Numbers, (0, 1, 2, …), or  
Integers, (…, -2, -1, 0, 1, 2, …). 

The definition is the same in both cases. 

The definition can also be used for 
Real Numbers, (-3.7, 0.0, 0.63, 1.0, 2.154, etc.). 

To be useful, an additional constraint is then needed :  
that q is an ‘integral’ value, ( …, -2.0, -1.0, 0.0, 1.0, 2.0, … ). 

 

Provided a ≠ 0 there can be many solutions, for instance 
q = 0, r = b 

And 
q = 1, r = b – a 

 
Note : If a = 0 then the solution is r = b; q can be any number. Not useful. 
 

If 
b = q×a + r 

is a solution then 
b = q×a + r + a – a 

so 
b = (q + 1)×a + (r - a) When the subtraction is defined 
b = (q - 1)×a + (r + a) When the subtraction is defined 

are also solutions. 
 

In general, 
b = (q + m)×a + (r – m×a) 
b = (q - n)×a + (r + n×a) 

for any numbers m and n with some restrictions : if negative numbers are not 
allowed then the values of m and n are restricted to ones where the subtractions 
are defined (e.g 2-1, but not 1-2); if the numbers are Real Numbers then the values 
of m and n are restricted to integral values. 
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These are all the solutions that meet the requirements when a ≠ 0. With so many 
solutions our supposed operator divop is not yet fully specified. 

Provided a ≠ 0 and negative numbers are allowed, we can require r to be in any 
interval 

c ≤ r < (c + |a|) 
 

where c is any number and |a| is abs(a). 

If there is a solution then there is only one solution.  
When negative numbers are allowed and a ≠ 0 then there is always a solution.  
When negative numbers are not allowed and a ≠ 0 then there is also always a 
solution provided c ≤ b. 

This existence and uniqueness property is well known for the case when c = 0; it is 
proved in many textbooks. It can be shown for other values of c by displaying 

 (b - c) = q×a + (r - c) with 0 ≤ (r - c) < |a| 

which has a unique q and (r - c) so that c ≤ r < (c + |a|). 

Once c is given, our supposed operator divop becomes fully specified. 

If negative numbers are not allowed then the only definition that works 
for all a, b, q, r ≥ 0 is 

 a = 0 : operator undefined 
a > 0 : b = q×a + r and 0 ≤ r < a 

 
I.e The well-known rule where c = 0. Note that a = |a| in this case. 

If numbers are allowed to be negative then c can be chosen to suit the application, 
possibly with different values of c for different cases. The choice of value(s) can 
provoke fierce arguments! 

Practical example : 
(11 o'clock + 2 hours) modulo 12 is 1 o'clock 
(11 o'clock + 1 hour) modulo 12 is 12 o'clock : not 0 o'clock!  

Here c = 1. 

2.2 Operator /qr 

The binary operator /qr divides b by a returning the quotient q and remainder r, as 
follows: 

 a = 0 : /qr(b, a) is undefined; 
a ≠ 0 : /qr(b, a) = (q, r) where b = q×a + r and  0 ≤ r < |a| 
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I.e As in divop with c = 0. 

2.3 Operator /cqr 

The ternary operator /cqr divides b by a returning the quotient q and remainder r 
offset by c, as follows: 

 if a = 0 
then /cqr(c, b, a) is undefined 
else if negative numbers are not allowed and b < c 
then /cqr(c, b, a) is undefined 
else /cqr(c, b, a) = (q, r) 
 where b = q×a + r and  c ≤ r < (c + |a|) 

 
I.e As in divop with c given. 

The user can choose whichever value of c is appropriate in the context of the 
application. E.g A value of 1 for 12 hour o’clock arithmetic. The user is 
responsible for providing the right value of c in each case. 

2.3.1 Implementation of /cqr 

Assume we have   a, b, c, q, r such that a ≠ 0 and 
b = q×a + r 

but where r is not necessarily in the required interval 
c ≤ r < (c + |a|) 

 
Note : One possibility is q = 0, r = b . 
 

How to adjust q and r to meet the desired constraint on r ? 

Use one of the two equations as necessary : 
b = (q - 1)×a + (r + a) 
b = (q + 1)×a + (r - a) 

Apply this repeatedly to increase or decrease r as necessary until r is in the target 
interval. 

If numbers can't be negative then this must be done in a way that assures we never 
try to go negative or use negative numbers. 



 Notes on algorithms : 1 Page 6 of 38 
Cases : 

r < c and a > 0 : q - 1, r + a 
r < c and a < 0 : q + 1, r – a, or equally r + |a| 
 
r ≥ (c + |a|) and a > 0 : q + 1, r – a 
r ≥ (c + |a|) and a < 0 : q - 1, r + a, or equally r - |a| 

 
This could all be done in one while loop after setting suitable increments for q and 
r, but to avoid negative numbers somewhat more disorderly code must be used. 

while ( r < c ) 
 { 
   // Not possible if no negative numbers and c=0! 
  if (a > 0) 
   { q -= 1; r += a; }  // or  r += abs(a); 
  else 
   { q += 1; r += abs(a); }  
 } 
 
while ( r >= (c + abs(a)) ) 
 { 
  if (a > 0) 
   { q += 1; r -= a } // or r -= abs(a); 
  else 
   { q -= 1; r -= abs(a); } 
 } 
 

This can be tidied up a little : 

while ( r < c ) 
 {  
   // Not possible if no negative numbers and c=0! 
  r += abs(a); 
  if (a > 0) 
   q -= 1; 
  else 
   q += 1; 
 } 
 

while ( r >= (c + abs(a)) ) 
 { 
  r -= abs(a); 
  if (a > 0) 
   q += 1; 
  else 
   q -= 1; 
 } 

If c < a or not much larger then only a few iterations of this step-by-one procedure 
need to be done. If c is much larger then the time to do the steps could be 
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inconveniently high. To avoid this, the step-by-one procedure can be preceded by 
a single large step, as follows. 

First do  
 /cqr(0, b, a) = (q, r) and 
 /cqr(0, c, a) = (qc, rc)  where 
  b = q×a + r  
  c = qc×a + rc  
 and r and  rc are close to zero 

Notice that  
 b = q×a – (qc×a) + (qc×a) + r 
so 
 b = (q–qc)×a + (qc×a) + r 
but 
 qc×a = c – rc 
so 
 b = (q–qc)×a  +  c – rc + r 

r and  rc are close to zero so the new remainder is close to c, as desired. The 
starting point for the step-by-one procedure is now (q1, r1) where  
 q1 = (q–qc) 
 r1 = b – q1×a 

2.4 Operators mod and % 

mod is the modulo operator. Given (b, a), the operator mod divides b by a and 
returns the remainder r as follows: 

 a ≤ 0 : mod(b, a) is undefined; 
a > 0: mod(b, a) = r where b = q×a + r and  0 ≤ r < a 

 
I.e It returns the r value of /qr(b, a). 

Note that a is not allowed to be zero or negative. b can be positive or zero; it can 
also be negative if the number system in use has negative numbers. The result is 
zero or positive even when b is negative. 

The operator % is an infix alias for mod, defined by : 
 
b % a = mod(b, a) 

 
It can be used as an alternative notation when desired. 
 
Warning : This is the definition of mod (and %) used in this document. 
Programming languages typically define it to return the r value of /cqr with c 
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depending on the sign of b, the sign of a, whether a and b have the same sign, etc. 
Different languages can have different rules. 

mod returns r values with 0 ≤ r < a. What if a different range is needed ? 
We could follow /cqr and use c as an index, writing modc , defined by : 

 a ≤ 0 : modc (b, a) is undefined; 
a > 0 : modc (b, a) = r where b = q×a + r and  c ≤ r < (c + |a|) 

 
Then h o’clock is written h mod1 12. 

Using mod to mean mod0 is a small abuse of notation. It would be unlikely to 
cause confusion. 

2.4.1 Proof that intermediate values can be reduced modulo B 

This is a result that is used later on in proofs. It can also be used in some of the 
algorithms. 

To prove : 
Given numbers x, y, B with 0 < B, and an operator op that is + or ×, 
then 
(x op y) % B 
= [ (x % B) op y ] % B 
= [ x op (y % B) ] % B 
= [ (x % B) op (y % B) ] % B 

 
Remark : 
If numbers can be negative then this result also applies when the operator op is - 
(minus). 

 

Proof : 

 if B ≤ 0 
then there is nothing to prove,  
otherwise : 

 

Define some quotients and remainders 
x = qx×B + rx for some qx, rx with 0 ≤ rx < B 
y = qy×B + ry for some qy, ry with 0 ≤ ry < B  

and 
(rx op ry) = q×B + r for some q, r with 0 ≤ r < B 
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Now substitute the expressions : 

A : 
(x op y) % B 
= ( (qx×B + rx) op (qy×B + ry) ) % B 
= ( ()×B + (rx op ry) ) % B 
= ( ()×B + (q×B + r) ) % B By the definition of q, r 
= ( (+ q)×B + r ) % B 
= r By the definition of % in 2.4 

 

B : 
[ (x % B) op y ] % B 
= [ (qx×B + rx) % B op (qy×B + ry) ] % B 
= [ rx op (qy×B + ry) ] % B By the definition of % in 2.4 
= ( ()×B + (rx op ry) ) % B 
= ( ()×B + (q×B + r) ) % B  By the definition of q, r 
= ( (+ q)×B + r ) % B 
= r By the definition of % in 2.4 

 

C : 
[ x op (y % B) ] % B 
= [ (qx×B + rx) op (qy×B + ry) % B ] % B 
= [ (qx×B + rx) op ry ] % B By the definition of % in 2.4 
= ( ()×B + (rx op ry) ) % B 
= ( ()×B + (q×B + r) ) % B  By the definition of q, r 
= ( (+ q)×B + r ) % B 
= r By the definition of % in 2.4 

 

D : 
[ (x % B) op (y % B) ] % B 
= [ (qx×B + rx) % B op (qy×B + ry) % B ] % B 
= [ rx op ry ] % B By the definition of % in 2.4 
= [ q×B + r ] % B  By the definition of q, r 
= r By the definition of % in 2.4 

 

Therefore, by A, B, C, D : 
r  
= (x op y) % B 
= [ (x % B) op y ] % B 
= [ x op (y % B) ] % B 
= [ (x % B) op (y % B) ] % B 
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QED 

This theorem can be applied repeatedly to sub-expressions if desired, as well as to 
whole expressions. 

But note the warning at the end of section 4.5. 

2.5 Proofs of some properties of the % operator 

These are some results that are used later on in proofs. 

Reminder : x % B is undefined if B ≤ 0, see section 2.4. 

.1 To prove :  
if 0 ≤ x < B then x % B = x 

 

 if not (0 ≤ x < B)  
then there is nothing to prove,  
otherwise : 

 
x = 0×B + x with 0 ≤ x < B, and B > 0 
so 

(x % B) = x Definition of % in 2.4 
 
QED 

Some consequences :     
if B > 0 then 0 % B = 0 
if B > 1 then 1 % B = 1 

 

.2 To prove :  
(x % B) % B = x % B 

 

 if B ≤ 0 
then both sides are undefined, 
otherwise : 

 
 x = q×B + r for some q, r, with 0 ≤ r < B, 
so 

x % B = r Definition of % in 2.4 
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and 

(x % B) % B 
= r % B 
= r By .1 
= x % B 

 
QED 

 

.3 To prove :  
(c×B + x) % B = x % B for any integral c 

 

 if B ≤ 0  
then both sides are undefined,  
otherwise : 

 
 x = q×B + r for some q, r with 0 ≤ r < B 
so  
 (c×B + x) % B 

= ( (c + q)×B + r ) % B 
= r Definition of % in 2.4 
= x % B Definition of % in 2.4 

 
QED 

 

.4 To prove : 
 if B > 0 
then [ x + (B - x % B) % B ] % B = 0 

 

That is, (B - x % B) % B is the modular additive inverse of x with respect to B, if it 
exists. In effect, it is ‘-x’.  

 
Proof : 

 if B ≤ 0 
then there is nothing to prove, 
otherwise : 

 
 As 0 ≤ (x % B) < B the subtraction is always defined even if negative 

numbers are not allowed.  Definition of % in 2.4 
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 [ x + (B - x % B) % B ] % B 

= [ x + (B - x % B) ] % B By 2.4.1 
= [ x % B + (B - x % B) ] % B By 2.4.1  
= [x % B + B - x % B ] % B 
= [ 1×B + 0 ] % B 
= 0 Definition of % in 2.4 

 
QED 

 

.5 To prove :  
if [ B > 0 and C > 0 ]  
then ( x % (B×C) ) % B = x % B 

 

 if  [ B ≤ 0 or C ≤ 0 ] 
then there is nothing to prove 
otherwise : 

 

 LHS : 
x = q1×(B×C) + r1  for some q1, r1 with 0 ≤ r1 < B×C 
= q1×(B×C) + q2×B + r2  for some q2, r2 with 0 ≤ r2 < B 
= (q1×C + q2)×B + r2 

 
 RHS : 

x = q0×B + r0   for some q0, r0 with 0 ≤ r0 < B 
 
But q, r values are unique, 
so 

r2 = r0  

and 
(x % B×C) % B = r1 % B = r2 = r0  

= x % B Definition of % in 2.4 
 
QED 

 

.6 To prove : 
if [ x > 1 and y > 1 and hcf(x, y) = 1 ] 
then x % y ≠ 0 

 
 where hcf(x, y) is the Highest Common Factor of x and y 
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 if [ x ≤ 1 or y ≤ 1 or hcf(x, y) ≠ 1 ] 

then there is nothing to prove 
otherwise : 

 
Case 1 :  x < y  

1 < x < y,  
so 

x % y = x By .1 
but 

x ≠ 0 As x > 1 
so 

x % y ≠ 0 in Case 1 
 

Case 2 : x ≥ y 
x = q×y + r for some q, r with 0 ≤ r < y Definition of % in 2.4 
q > 0 Because x > 0 and y > 0 and x ≥ y 

 
 assume x % y = 0  
then 

x = q×y Definition of % in 2.4 
hcf(x, y) = y Definition of Highest Common Factor 

but  
y > 1 Premise 

so 
hcf(x, y)  ≠ 1 

and 
hcf(x, y) = 1 Premise 
contradiction! 

 
Therefore 

x % y ≠ 0 in Case 2 Reductio ad absurdam 
 
 By Case 1 and Case 2 

x % y ≠ 0 
 
QED 

 

.7 To prove : 
if B > 0 and x % B = y % B 
then (x×a) % B = (y×a) % B 
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 if B ≤ 0 or x % B ≠ y % B 

then there is nothing to prove 
otherwise : 

 

Define some quotients and remainders 
x = qx×B + rx  for some qx, ry with 0 ≤ rx < B  
y = qy×B + ry  for some qy, ry with 0 ≤ ry < B 

 
Now 

x % B = rx and y % B = ry Definition of % in 2.4  
so 

rx = ry Premise 
= r, say 

therefore  
(x×a) % B  
= ((x % B)×a) % B By 2.4.1 
= (r×a) % B 

and  
(y×a) % B 
= ((y % B)×a) % B By 2.4.1 
= (r×a) % B 

so 
(x×a) % B = (r×a) % B = (y×a) % B 

 
QED 
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3 The Highest Common Factor (hcf) algorithm 

3.1 The plan 

.1 State the hcf algorithm and its pre- and post-conditions. 
 
.2 Prove that it always terminates. 
 
.3 Prove that it always produces a common factor. 
 
.4 Prove that it always produces the highest common factor. 

3.2 The hcf algorithm and its pre- and post-conditions 

The problem 

  Given numbers a and b, find their highest common factor h. That is, find a 
number, h = hcf(b, a), that divides both a and b exactly (a common factor), 
and is the highest such number. 

 
  Here, “numbers” are either all Natural Numbers, or all Integers. 
 
Pre-conditions 

  Both a and b are positive : 0 < a and 0 < b 
 
 
Post-conditions 

  h = hcf(b, a) is a common factor of a and b (h divides both a and b exactly) 
and 
h is the highest such common factor. 

 
 
The algorithm : 

  Calculate a succession of couples starting with (a0, b0) = (a, b), and ending 
with the couple (am, 0). 

 
 For 0 ≤ n < m the successor of the couple (an, bn) is (an+1, bn+1) where 

an+1 = bn 

bn+1 = an % bn 

 
  The last couple in the sequence is (am, 0) = (h, 0). 

h is the answer : hcf(b, a) = h. 
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3.3 Proof that the algorithm always terminates 

The definition of r = x % y is that x = q×y + r for some quotient q with  
0 ≤ r < y. 
 
There is always a solution, and only one, provided y > 0. 
Hence, in going from (an, bn) 
to 
(an+1, bn+1) = ( bn, an   % bn )  
we must have 0 ≤ bn+1 < bn . 
 

  The sequence starts at ( ~ , b) , proceeds through a succession of couples 
with a strictly decreasing right-hand part that is never less than 0, and ends 
at ( ~′ , 0) , so there can at most be b + 1 elements in the sequence, usually 
fewer. 

 
  Therefore the sequence of couples is always finite; the algorithm always 

terminates. 
 
QED 

3.4 Proof that the algorithm always produces a common factor 

  Consider the final couple in the sequence. It is (am, 0) = (h, 0) 
for some m > 0 . 

 
  Note : b > 0 by a pre-condition so the last element is not the first element. 
 
.1 To prove : 

for all 0 ≤ n < m 
if h is a common factor of an+1 and bn+1 

then h is a common factor of an and bn, . 
 
 By the definition of the sequence, 

an+1 = bn 

bn+1 = an % bn 

 
A : 

bn = an+1 

so immediately : 
if h is a factor of an+1 

then h is a factor of bn. 
 

B : 
an   % bn = bn+1 
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By the definition of %, 

an = q×bn + (an % bn ) for some q 
 
That is, 

an = q×an+1 + bn+1  for some q . 
if h is a factor of an+1 and bn+1  

then an = q×a'×h + b'×h for some a' and b'  
 

an = (q×a' + b')×h for some a' and b' , so h is a factor of an. 
 
By A and B, 

if h is a common factor of an+1 and bn+1 

then h is a common factor of an and bn.  
 
QED 

 

.2 To prove : 
h is a common factor of a and b. 

 
  h is a common factor of am = h and of bm = 0 (vacuously). 
 
  Therefore, by .1 and induction, h is a common factor of an and bn for  

all 0 ≤ n ≤ m, and hence of a0 = a and b0 = b. 
 
QED 

3.5 Proof that the algorithm always produces the highest 
common factor 

.1 To prove : 
for all  0 ≤ n < m 
if  c is any common factor of an and bn 

then  c is a common factor of an+1 and bn+1. 
 
 Reminder : 

Any c ≠ 0 is a factor of 0, vacuously, and bm = 0, so therefore c is a factor of 
bm. 

 
  By the definition of the sequence, 

an+1 = bn 

bn+1 = an % bn and 
bn > 0 
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A : 

an+1 = bn 

so immediately 
if  c is a factor of bn 

then  c is a factor of an+1. 
 
B : 

bn+1 = an % bn 

 
 By the definition of % 

an = q×bn + (an % bn)  for some q with 0 ≤ (an % bn) < bn 

so 
an ≥ q×bn 

and the subtraction 
an - q×bn 

is defined even if negative numbers are not allowed. 
 
Therefore 

(an % bn ) = an - q×bn 

and it is always defined 
so 

bn+1 = an - q×bn 
 
  if  c is a factor of both an and bn  

then  an = a'×c   for some a' and 
  bn = b'×c,  for some b' 

so 
bn+1  = a'×c - q×b'×c = (a' - q×b')×c 

therefore 
if  c is a factor of both an and bn 

then  c is a factor of bn+1 
 
By A and B, 

if  c is a common factor of an and bn 
then  c is a common factor of an+1 and bn+1  

 
QED 

 

.2 To prove : 
if  c is any common factor of a = a0 and of b = b0 

then  for all 0 ≤ n ≤ m  
  c is a common factor of an and bn  
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By .1 and induction 

if  c is a common factor of a0 and b0 

then  for all 0 ≤ n ≤ m 
  c is a common factor of an and bn 

 
QED 

 

.3 To prove :  
h is the highest common factor of a and b. 

 
 For any common factor, c, of a and b we have that 

c ≤ a and c ≤ b 
As 

there exists a common factor of a and b, namely 1, and c cannot be 
arbitrarily large 

Then  
there is a highest common factor, cmax, of a and b 

 
By .2 

cmax is a factor of am 
am = h 

so  cmax ≤ h 
 
By 3.4, item .2 

h is a common factor of a and b  
so  h ≤ cmax 
 
Therefore  

cmax ≤ h ≤ cmax 
so h = cmax 
 
I.e h is the highest common factor of a and b 
 
QED 
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3.6 Some observations 

.1 Negative numbers 
 
Suppose negative numbers are allowed. If c is a common factor of a and b 
then -c is also a common factor. 
 
Also 'highest' can be regarded as the most positive rather than the one with 
the greatest magnitude. 
 
Thus the definition of the hcf function can be extended to a function hcf* on 
all non-zero integers by defining : 

 
 hcf*(b, a) = hcf( abs(b), abs(a) ), where a ≠ 0 and b ≠ 0 
 
 This definition can also be used when negative numbers are not allowed. 
 
 
.2 Zero numbers 
 
 The algorithm defined in 3.2 never produces a zero result; it is always 1 or 

more. The case of attempting to apply hcf* with a or b zero can be reported 
unambiguously by returning a zero result. 

 
 Thus the hcf* function can be extended to the function hcf** on all 

numbers by defining : 
 
 if (a ≠ 0 and b ≠ 0)  

then hcf**(b, a) = hcf( abs(b), abs(a) ) 
otherwise hcf**(b, a) = 0  

 
 
.3 ‘The’ hcf function 
 
 At this point the hcf** function can be renamed as hcf, so extending the 

function defined in section 3.2 to all Natural Numbers and all Integers. 
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4 The inverse modulo (inv_mod) algorithm 

4.1 The inv_mod algorithm : Outline and pre- and post-
conditions 

The problem 
 
Given numbers Num and Base, find the modular multiplicative inverse, Inv, 
of Num with respect to Base, if it exists. That is, find a number 
 
  Inv = inv_mod(Num, Base) 
such that 
  mod( Num×Inv, Base ) = 1 

 
In other words, Inv is Num-1 in modulo Base arithmetic. 

 
 Here, “numbers” are either all Natural Numbers, or all Integers. 
 

Symbol definitions 

Some symbols used in the description of the algorithm and in the proofs need to be 
defined more explicitly than usual. 

.1 The × and ꞏ operators 
 
Given any two numbers x and y, then x×y is defined here to be x multiplied 
by y using the rules of multiplication for Natural Numbers when x and y are 
Natural Numbers and the rules for Integers when x and y are Integers. 
 
xꞏy is defined here to mean the same as x×y. (Dot can be easier to read in a 
long expression). And xꞏy % B is defined to mean (xꞏy) % B and x % BꞏC 
to mean x % (BꞏC). 

 

.2 The (-x) symbol 
 
Given any two numbers x and B with 0 < B, then there are two cases 
relevant here : 
 
if the number system in use allows negative numbers 
then (-x) means –x 
else (-x) means [B - (x % B)] % B 
 
The value of B is assumed from the context. When “numbers” are Natural 
Numbers B will always be Base in what follows. 
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Pre-conditions 

.1  Base > 1 
 
Otherwise either Base = 1 and Num % Base = 0, which has no inverse, 
or 
Base ≤ 0 so Num % Base is not defined, see 2.4 

 

.2 Num % Base ≠ 0 
 
0 has no inverse, as usual. 

 

.3 hcf(Num, Base) = 1 
 
Otherwise an inverse does not exist, see 4.3. 

 

Post-conditions 

.1 The result, Inv = inv_mod(Num, Base), 
is the desired inverse, obeying 
mod( Num × Inv, Base ) = 1 

 

.2 0 ≤ Inv < Base 
 
The result is always tidied up. 

 

The algorithm : Outline 

Note : There are other algorithms, see Wikipedia (search term Modular 
Multiplicative Inverse). 

Perform the hcf algorithm, but recording information in a sequence along the way. 
At each stage of the calculation record six values : 

.1 The reducing pair of numbers of the hcf algorithm; 

.2 The quotient and remainder of the division performed at that stage of 
calculating the hcf; 

.3 A pair of numbers, to be calculated later. 
 
Now run backwards along the sequence, putting values into the third pair of 
numbers. An initial value is put into an element near the end. A calculated value is 
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put into the preceding elements in turn until reaching the beginning of the 
sequence. 

Finally, derive the required inverse from the values now in the first element of the 
sequence. 

4.2 The inv_mod algorithm : Details 

Form a sequence of records, each holding six values : 
a :  as in the hcf algorithm 
b :  as in the hcf algorithm 
q :  quotient  where a = qꞏb + r with 0 ≤ r < b  
r :  remainder where a = qꞏb + r with 0 ≤ r < b 
c :  value that is propagated backwards; resembles a  
d :  value that is propagated backwards; resembles b 

 

.1 Forward calculation 

Construct the first element of the sequence : 
a0 = Num 
b0 = Base 

Add successor elements : 
an+1 = bn 

bn+1 = an % bn 
 

until the last element has been reached, the element where to continue 
would mean dividing by zero. 

 
At the last element : 

am = h for some h 
bm = 0 for some m (specifically, the least m such that bm = 0) 

 
Ensure that at each element the values qn, rn obey : 

for 0 ≤ n < m 
an = qnꞏbn + rn   with 0 ≤ rn < bn 

(i.e the quotient q and remainder r on dividing an by bn) 
and  

for n = m 
qm = "don't care" 
rm = "don't care" 
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There can be a check on the three pre-conditions during this process : 

 
At the beginning check that 

Base > 1, i.e that b0 > 1 
and that 

Num % Base ≠ 0,  i.e that r0 ≠ 0. 
 
At the end check that 

hcf(Num, Base) = 1,  i.e that am = h = 1. 
 

.2 Backward calculation 

Ensure that at each element, c and d obey : 
 
at the last two elements : 

cm-1 = cm = "don't care"  
dm-1 = dm = "don't care" 

 
at the last but two element : 

cm-2 = qm-2 

dm-2 = (-1) 
 
and for all other elements : 
 for 0 ≤ n < m-2 

cn = qnꞏ(-cn+1) + dn+1 

dn = cn+1 

 
Note : Remember the definition of (-x) in 4.1, Symbols .2. 

 

.3  The result is : 

 Inv_mod(Num, Base) 
= Inv 
= (Base - (d0 % Base)) % Base 

 
I.e The result is (-d0) which is then adjusted if necessary so 0 ≤ Inv < Base. 
(However, Inv won’t be 0 as this is precluded by the pre-conditions). 

Remark 1 : Inconvenient sub-expressions 

To avoid negative numbers or too-large numbers it is valid to replace any sub-
expression, exp, in the calculation with exp % Base , see 2.4.1. 
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Remark 2 : Compare a, b with c, d 

Consider the elements of the sequence : 

 an = qnꞏbn + (an % bn) from the definition of qn 

so 
(an % bn) = an - qnꞏbn This subtraction is always defined,  
 see 3.5 item .1 B 

 
Now 

an+1 = bn hcf algorithm 
bn+1 = an % bn hcf algorithm 
= an - qnꞏbn 

= an - qnꞏan+1 

so 
an = qnꞏan+1 + bn+1 

bn = an+1 

 

Notice the similarity of c, d to a, b. 

 

4.3 Proof that hcf(Num, Base) = 1 is a necessary requirement 

Consider two numbers, a and B, both positive, with the common factor c. 1 is a 
factor of both a and B so c does exist. 

Suppose that there is a number, i, that is the multiplicative inverse of a with 
respect to B, namely 

 mod(aꞏi, B) = 1 
 
That is 

for some q 
aꞏi = qꞏB + 1 Definition of mod 

so 
aꞏi - qꞏB = 1 

This subtraction is defined even if negative numbers are not allowed. 
 
Both a and B have the common factor c, so 

for some a', b' 
a = a'ꞏc  
B = b'ꞏc 

Thus  
a'ꞏcꞏi - qꞏb'ꞏc = 1   
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so 

cꞏ(a'ꞏi - qꞏb') = 1 
 
The numbers have integral values of one kind or another, so there cannot be a 
solution for i unless the left hand side of the equation evaluates to 

 1 × 1 
 
That is, for any a and B,  

c = 1 
is a necessary requirement if a is to have an inverse with respect to B. 
 
c is a factor of both a and B, c = 1, and cannot be greater than 1, so 1 is the highest 
common factor. That is 
 hcf(a, B) = 1. 

QED 

 
The correctness of the algorithm will then prove that the pre-conditions are 
sufficient requirements. 

 

4.4 Proof that the sequence always has an element m - 2 

Consider two numbers, Num and Base, that obey the pre-conditions given in 
section 4.1. The algorithm constructs a sequence of records starting at element 0 
and finishing at element m. 

Element 0 contains the value 
(a0, b0) = (Num, Base) By construction, see 4.2 item .1 

 
Element m contains the values 

(am, bm) = (h, 0) where h = hcf(Num, Base) 
 By construction, see 4.2 item .1 

 
Thus 

b0 = Base 
bm = 0 

but by a pre-condition on Base 
Base > 0 By 4.1 Precondition .1 

so 
b0 ≠ bm 

and 
m ≠ 0 
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Therefore m > 0 so element m-1 exists and contains the values 

(am-1, bm-1) = (qm-1ꞏh, h) By 4.2 Remark 2 
but 

h = 1 By 4.1 Precondition .3 
so 

(am-1, bm-1) = (qm-1, 1) 
 
Thus 

b0 = Base 
bm-1 = 1 

but by a pre-condition on Base  
Base > 1 By 4.1 Precondition .1 

so 
b0 ≠ bm-1 

and 
m ≠ 1 

 
Therefore m > 1 so element m-2 exists. 
 
QED 

4.5 Proof that the result is always correct : for Integers 

The desired inverse is (-d0) % Base. Some details of the proof of correctness 
depend on the precise definition of “(-d0)”. It is convenient to give separate proofs 
for Integers and Natural Numbers. 

This section contains the proof for the case when negative numbers are allowed – 
the Integers. 

Reminder : When negative numbers are allowed the (-x) symbol is defined in 
section 4.1 Symbol Definitions .2 to mean -x. 

Remember that  
Base > 1 By 4.1 Precondition .1 

so 1 % Base = 1 throughout these proofs 
 
Start by proving a general intermediate result. 

.1 To prove : 
for all n such that 0 ≤ n ≤ m-2 
anꞏ(-dn) + bnꞏ(-cn) = 1 when negative numbers are allowed 
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.1.1  To prove :  

am-2ꞏ(-d m-2) + b m-2ꞏ(-c m-2) = 1 
 
  am 

= h By construction, see 4.2 item .1 
= 1 By 4.1 Precondition .3 

 
bm 

= 0 By construction, see 4.2 item .1 
 

am-1 

= qm-1ꞏam + bm From 4.2 item .3 Remark 2 
= qm-1 

 
  bm-1 

= am From 4.2 item .3 Remark 2 
= 1 

 
 am-2 

= qm-2ꞏam-1 + bm-1 From 4.2 item .3 Remark 2 
= qm-2ꞏqm-1 + 1 

 
 bm-2 

= am-1 From 4.2 item .3 Remark 2 
= qm-1 

 
 cm-2 

= qm-2 By construction, see 4.2 item .2 
 
 dm-2 

= (-1) By construction, see 4.2 item .2 
 
Therefore 

am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2) 
= (qm-2ꞏqm-1 + 1)ꞏ(-(-1)) + qm-1ꞏ(-qm-2) 
= qm-2ꞏqm-1 + 1 - qm-1ꞏqm-2 

= 1 
 
QED 

 

.1.2  To prove : 
for all n such that 0 ≤ n < m-2 
anꞏ(-dn) + bnꞏ(-cn) = an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1) 
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Expand 

anꞏ(-dn) + bnꞏ(-cn) 
= (qnꞏan+1 + bn+1)ꞏ(-dn) + an+1ꞏ(-cn) By 4.2 Remark 2 
= (qnꞏan+1 + bn+1)ꞏ(-cn+1) + an+1ꞏ(-(qnꞏ(-cn+1) + dn+1)) 
  By construction see 4.2 item .2 
= an+1ꞏqnꞏ(-cn+1) + bn+1ꞏ(-cn+1) 
- an+1ꞏqnꞏ(-cn+1) + an+1ꞏ(- dn+1) 
= an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1) 

 
QED 

 

.1.3  Therefore by .1.1, .1.2 and induction 
for all n such that 0 ≤ n ≤ m-2  
anꞏ(-dn) + bnꞏ(-cn) = 1 

 
QED 

 

Now prove correctness. 

.2 To prove : 
(-d0) % Base is the (tidied up) multiplicative inverse of Num w.r.t. Base 
 

That is, that 
mod( Num×(-d0), Base ) = 1 

or, equally, that 
Numꞏ(-d0) % Base = 1 

 
Proof : 

 a0ꞏ(-d0) + b0ꞏ(-c0) = 1 By .1 when n = 0 
so 

[ a0ꞏ(-d0) + b0ꞏ(-c0) ] % Base 
= 1 % Base 
= 1 By 2.5 item .1  
  as Base > 1 by 4.1 Pre-condition .1 

 
But 

a0 = Num By construction, see 4.2 item .1 
b0 = Base By construction, see 4.2 item.1  

So 
[ Numꞏ(-d0) + Baseꞏ(-c0) ] % Base = 1 

hence 
Numꞏ(-d0) % Base = 1 By 2.5 item .3 
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Conclusion : 

The (tidied up) multiplicative inverse of Num with respect to Base 
= (-d0) % Base 
= (Base - (d0 % Base)) % Base By definition of (-x), 4.1 Symbols .2 

 

QED 

Note : By 2.4.1 this result still holds if some or all of the intermediate results when 
calculating cn and dn are reduced modulo Base. 

 

.3 Incidental proof 
if Num > 1  
then (-c0) is the multiplicative inverse of Base w.r.t. Num 

 

Remark 1 : 
Num ≠ 0 by 4.1 Pre-condition .2; 
 
if Num < 0 then Base % Num is not defined; 
 
if Num = 1 then Base % Num = 0 so Base has no inverse. 

 

Remark 2 : To confirm : 
 
Num > 1 here; 
hcf(Base, Num) = hcf(Num, Base) = 1; 
Base % Num ≠ 0 By 2.5 item .6 (remembering Base > 1) 
 
The inv_mod pre-conditions are met 

so 
inv_mod(Base, Num) is defined 

 
Reminder : 

“Numbers” here are Integers so (-c0) means -c0 and (-d0) means -d0 
 

Proof 

 if Num ≤ 1  
then there is nothing to prove 
otherwise :  

 
 a0ꞏ(-d0) + b0ꞏ(-c0) = 1 By .1 
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so, as in the proof of .2 but with % Num instead of % Base, 

[ Numꞏ(-d0) + Baseꞏ(-c0) ] % Num = 1 
[Numꞏ(-d0) % Num + Baseꞏ(-c0)] % Num = 1  
[0 + Baseꞏ(-c0)] % Num = 1 

hence 
Baseꞏ(-c0) % Num = 1 

 
Conclusion : 

Provided Num > 1, 
the (tidied up) multiplicative inverse of Base with respect to Num 
= (-c0) % Num 
= (Num - (c0 % Num)) % Num 

 
QED 

 

Warning : Unlike .2, this result .3 does not hold if intermediate results are 
reduced modulo Base. 

On the other hand, provided Num > 1, then both .2 and .3 do still hold if 
intermediate results are reduced modulo NumꞏBase (by 2.5 item .5). 

4.6 Proof that the result is always correct : for Natural Numbers 

The inverse is (-d0) % Base. Some details of the proof of correctness depend on the 
precise definition of “(-d0)”. It is convenient to give separate proofs for Integers 
and for Natural Numbers. 

This section contains the proof for the case when negative numbers are not 
allowed – the Natural Numbers. 

Reminder : When negative numbers are not allowed the (-x) symbol is defined in 
4.1 Symbol .2 to mean [B - (x % B)] % B, with B = Base in this context. 

By the definition of % in 2.4 we have 0 ≤ (x % B) < B so the subtraction is always 
defined. 

Note : Care must be taken that no step in the proofs appears to subtract a larger 
number from a smaller one. 

Remember that  
Base > 1 By 4.1 Precondition .1 

so 1 % Base = 1 throughout these proofs 
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Start by proving some general results concerning (-x). 

.1 To prove :  
(-x) % Base = (-x) 

 

 (-x) = [Base - (x % Base)] % Base Definition of (-x) in 4.1 Symbols .2 
so 

(-x) % Base 
= [Base - (x % Base)] % Base % Base 
= [Base - (x % Base)] % Base By 2.5 item .2 
= (-x) Definition of (-x) in 4.1 Symbols .2 

 
QED 

 

.2 To prove : 
( x + (-x) ) % Base = 0 

 
 ( x + (-x) ) % Base 

= [ x + (Base - x % Base) % Base ] % Base 
  Definition of (-x) in 4.1 Symbols .2 
= 0 By 2.5 item .4 

 
QED 

 

.3  To prove : 
(-(-x)) = x % Base 

 

Case 1 : x % Base = 0  
   
(-(-x)) 
= [ Base - (-x) % Base ] % Base Definition of (-x) in 4.1 Symbols .2 
= [ Base - (Base - x % Base) % Base % Base ] % Base 
 Definition of (-x) in 4.1 Symbols .2 
= [ Base - (Base - 0) % Base ] % Base 
 By this case and 2.5 item .2 
= [ Base - 0 ] % Base Definition of % in 2.4 
= 0 Definition of % in 2.4 
= x % Base This case 
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Case 2 : 0 < x % Base < Base 

 
(-(-x)) 
= [ Base - (-x) % Base ] % Base Definition of (-x) in 4.1 Symbols .2 
= [ Base - (Base - x % Base) % Base % Base ] % Base 
  Definition of (-x) in 4.1 Symbols .2 

 = [ Base - (Base - x % Base) ] % Base By 2.5 item .2, twice 
 = [ Base + (x % Base - x % Base) - (Base - x % Base) ] % Base 

= [ x % Base + (Base - x % Base) - (Base - x % Base) ] % Base 
= [ x % Base ] % Base 
= x % Base By 2.5 item .2 

 
Therefore, by Case 1 and Case 2  

(-(-x)) = x % Base 
 
QED 

 

.4  To prove : 
( -(x + y) ) = [ (-x) + (-y) ] % Base 

 
Let 

x = qxꞏBase + rx for some qx, rx with 0 ≤ rx < Base 
y = qyꞏBase + ry for some qy, ry with 0 ≤ ry < Base 
and 
(rx + ry) = qꞏBase + r for some q, r with 0 ≤ r < Base 
 

We have 
qꞏBase ≤ (rx + ry) < (Base + Base) 

so 
q < (1 + 1) 
q ≤ 1 

 
LHS 

( -(x + y) ) 
= [ Base - (x + y) % Base ] % Base Definition of (-x) in 4.1 Symbols .2 
= [ Base - (qxꞏBase + rx + qyꞏBase + ry) % Base ] % Base 
= [Base - (rx + ry) % Base ] % Base By 2.5 item .3 
= [Base - r] % Base Definition of r above and of % in 2.4 

 
RHS 

[ (-x) + (-y) ] % Base 
 = [ (Base - x % Base) % Base + (Base - y % Base) % Base ] % Base 

  Definition of (-x) in 4.1 Symbols .2 
 = [ (Base - x % Base) + (Base - y % Base) ] % Base By 2.4.1 
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 = [ (Base - (qxꞏBase + rx) % Base) + 

  (Base - (qyꞏBase + ry) % Base) ] % Base As above 
 = [ (Base - rx) + (Base - ry) ] % Base Definition of % in 2.4 

= [ (Base + Base) - (rx + ry) ] % Base 
= [ (Base + Base) - (qꞏBase + r) ] % Base Definition of q, r 
= [ (1 - q)ꞏBase + (Base - r) ] % Base q ≤ 1, r < Base 
= [Base - r] % Base By 2.5 item .3 

 
so LHS = RHS 
 
QED 

 

Now prove that the result of the algorithm is always correct. 
Start by proving a general intermediate result. 

.5 To prove : 
for all n such that 0 ≤ n ≤ m-2 
[anꞏ(-dn) + bnꞏ(-cn)] % Base = 1 when negative numbers are not allowed 

 
.5.1  To prove : 

[am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2)] % Base = 1 
 
Remember that 1 < Base by 4.1 Precondition .1. 

 am 
= h By construction, see 4.2 item .1 
= 1 By 4.1 Precondition .3 

 
bm 
= 0 By construction, see 4.2 item .1 

 
 am-1 

= qm-1ꞏam + bm From 4.2 item .3 Remark 2 
= qm-1  

 
 bm-1 

= am From 4.2 item .3 Remark 2 
= 1 

 
 am-2 

= qm-2ꞏam-1 + bm-1 From 4.2 item .3 Remark 2 
= qm-2ꞏqm-1 + 1  
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 bm-2 

= am-1 From 4.2 item .3 Remark 2 
= qm-1 

 
 cm-2 

= qm-2 By construction, see 4.2 item .2 
 
 dm-2 

= (-1) By construction, see 4.2 item .2 
 
Therefore 

[am-2ꞏ(-dm-2) + bm-2ꞏ(-cm-2)] % Base 
= [(qm-2ꞏqm-1 + 1)ꞏ(-(-1)) + qm-1ꞏ(-qm-2)] % Base 
= [(qm-2ꞏqm-1 + 1)ꞏ(1 % Base) + qm-1ꞏ(-qm-2)] % Base By .3 
= [(qm-2ꞏqm-1 + 1)ꞏ1 + qm-1ꞏ(-qm-2) ] % Base By 2.5 item .1 
= [1 + qm-1ꞏ( qm-2 + (-qm-2)) ] % Base 
= [1 + qm-1ꞏ[( qm-2 + (-qm-2)) % Base] ] % Base By 2.4.1, thrice 
= [1 + 0] % Base By .2 
= 1 By 2.5 item .1 

 
QED 

 

.5.2  To prove : 
for all n such that 0 ≤ n < m-2 
[anꞏ(-dn) + bnꞏ(-cn)] % Base = [an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)] % Base 

 
Expand 

[anꞏ(-dn) + bnꞏ(-cn)] % Base 
= [(qnꞏan+1 + bn+1)ꞏ(-dn) + an+1ꞏ(-cn) ] % Base By 4.2 item .3 Remark 2 

 = [an+1ꞏ[qnꞏ(-dn) + (-cn)] + bn+1ꞏ(-dn)] % Base 
= [an+1ꞏ[qnꞏ(- cn+1) + [ (-(qnꞏ(-cn+1) + dn+1)) ] ] + bn+1ꞏ(-cn+1)] % Base 
 By 4.2 item .2 

 = [an+1ꞏ[qnꞏ(- cn+1) + [ (-(qnꞏ(-cn+1))) + (-dn+1) ] % Base] 
 + bn+1ꞏ(-cn+1)] % Base By .4 

 = [an+1ꞏ[ [qnꞏ(- cn+1) + (-(qnꞏ(-cn+1)))] % Base + (-dn+1)] 
 + bn+1ꞏ(-cn+1)] % Base By 2.4.1, twice 

 = [an+1ꞏ[0 + (-dn+1)] + bn+1ꞏ(-cn+1)] % Base By .2 
= [an+1ꞏ(-dn+1) + bn+1ꞏ(-cn+1)] % Base 

 
QED 
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.5.3 Therefore by .5.1, .5.2, and induction,  

for all n such that 0 ≤ n ≤ m-2  
[anꞏ(-dn) + bnꞏ(-cn)] % Base = 1  

 
QED 

 

Finally prove correctness. 

.6 To prove : (-d0) is the multiplicative inverse of Num w.r.t. Base 
 

That is, that 
mod( Num×(-d0), Base ) = 1 or, equally, that 
Numꞏ(-d0) % Base = 1 

 
 [ a0ꞏ(-d0) + b0ꞏ(-c0) ] % Base = 1 By .5 when n = 0 
but 

a0 = Num and 
b0 = Base 

so 
[ Numꞏ(-d0) + Baseꞏ(-c0) ] % Base = 1 

hence 
Numꞏ(-d0) % Base = 1 By 2.5 item .3 

 
Conclusion : 

The (tidied up) multiplicative inverse of Num with respect to Base 
= (-d0) % Base 
= (Base - (d0 % Base)) % Base 

 
QED 

Note : By 2.4.1 this result still holds if some or all of the intermediate results when 
calculating cn and dn are reduced modulo Base. 

 

4.7 Proof that the result is unique 

Remember that  
Base > 1 By 4.1 Precondition .1 

so 1 % Base = 1 throughout this proof 
 
Assume that t and u are both inverses, so that 

Numꞏt % Base = 1 with 0 < t < Base 
Numꞏu % Base = 1 and  0 < u < Base 
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 Numꞏt % Base = 1 = Numꞏu % Base  

Numꞏt % Base = Numꞏu % Base    
so 

Numꞏtꞏt % Base = Numꞏtꞏu % Base By 2.5 item .7  
(Numꞏt % Base)ꞏt % Base = (Numꞏt % Base)ꞏu % Base By 2.4.1 

 1ꞏt % Base = 1ꞏu % Base Definition of t  
t = u By 2.5 item .1 and definitions of t, u 

 
 The (tidied up) multiplicative inverse is unique (and it exists when the pre- 

conditions are true). 
 
QED 

4.8 Some observations 

.1 Base = 1 
 
Base = 1 is a peculiar case but it is well defined and so need not be rejected. 
When Base = 1, n % Base = 0 so n has no inverse for any n. 

 

.2 Num = 1 
 
One case can be implemented immediately without executing the 
algorithm : 
 
if Base > 1 and Num = 1 then the inverse is 1. 

 

.3 Minimum sequence size 
 
The minimum length of the element sequence is 3. 
E.g when Num = 1 and Base = 2 the sequence goes 
(1, 2) (2, 1) (1, 0). 

 

.4 Division in modular arithmetic 
 
If Base is known and fixed in a particular context then the inverse of Num 
can be written as 1/Num or Num-1. In general, the division a/b can then be 
defined to be a×(1/b) or a×b-1 (not defined when b = 0). 
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.5 All Num and Base values 

 
As the inverse can never be zero then, as in the hcf function, zero can be 
used to indicate that Num or Base does not meet the pre-conditions. With 
this rule the inv_mod function can be extended to all numbers. 

 The End  


